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Abstract 

Construction grammars are commonly written by hand. 

This is not only time and resource intensive, but also limits 

the potential for applications that need to extract accurate 

and deep semantics from real-world language. In the 

present paper we explore novel ways to tap into existing 

resources to expand Embodied Construction Grammar 

(ECG) semi-automatically from FrameNet, an approach 

motivated by the shared theoretical underpinnings of ECG 

and FrameNet. We show how FrameNet data can be 

readily translated into ECG constructions and schemas, 

and discuss ways to identify the kinds of general patterns 

that are crucial to construction grammar approaches. The 

results achieved thus far indicate how a data-driven 

approach to construction grammar development is not only 

desirable but feasible.  

Introduction
1 

  

The automatic identification of meaningful, event-
related information from text presents both an opportunity 
and a challenge to construction grammar approaches, 
especially when paired with frame semantics. On the one 
hand, since constructions represent form-meaning 
pairings, they are well-suited for representing the patterns 
by which meanings are expressed in language. 
Additionally, frame-based semantic representations 
provide a natural way to capture meaning about events, 
event participants, and the relations between participants 
and events, at various granularities. On the other hand, 
grammars are built by hand in most construction grammar 
approaches, thereby limiting their coverage and potential 
application to wide-scale computational applications. 

The grammar formalism of Embodied Construction 
Grammar (Bergen and Chang 2005, Feldman et al. 2010) 
has facilitated its computational implementation and 
successful application in various language understanding 
applications, including robot control and interaction (Trott 
et al. 2016) and voice-controlled computer gaming (Oliva 
et al. 2012). However, the coverage of current ECG 
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grammars is still quite limited. Expanding coverage by 
hand is time and resource intensive. Moreover, there are 
methodological concerns, since a a grammar designed 
entirely by hand runs the risk of reflecting the biases of its 
human designer, rather than capturing the nuances and 
variations of actual language use. 

The current work is motivated by an effort to find ways 
to semi-automatically increase the scale and complexity 
of the language that can be analyzed by an ECG grammar, 
thus enabling a broader range of applications that require 
rich and deep semantic analysis. FrameNet (Ruppenhofer 
et al. 2016), with its 10,000+ lexical units and 1,200+ 
frames, is an obvious resource to help expand ECG 
grammar size. Crucially, their common roots in Frame 
Semantics (Fillmore 1982; Chang et al. 2002; Petruck 
1996; Dodge and Petruck 2014) provide the the 
conceptual compatibility necessary to this approach. 
Importantly, FrameNet (FN) is supported by corpus 
evidence: FN data is based on and linked to actual 
language use. FN thus provides a means to take a more 
data-driven approach to increasing grammar coverage.  

As we show, building computational tools to visualize 
and manipulate the FN data makes it possible to better 
appreciate and more fully tap this rich resource. Further, 
we discuss how FN resources can be leveraged to 
substantially and (semi-) automatically expand both the 
semantic and constructional coverage of the grammar. 
Another objective of the current work is to automate this 
expansion process to the fullest extent possible, in order 
to make this scaling method more feasible.  

In the following sections, we first provide some 
background on Frame Semantics, FrameNet, and ECG. 
Then, we discuss ways to expand ECG grammar 
coverage, first looking at frame-based meaning 
representations, and then at the ways that FN annotated 
data can be used to hypothesize and generate ECG 
constructions.  

Frame Semantics and FrameNet (FN) 

Frame Semantics analyzes language meaning using 
frames, which are experience-based schematic 
conceptualizations of scenes, participants, and their 
relations to one another.  The FN knowledge base (Baker 



 

 

et al. 2003) takes frame semantics as its conceptual 
foundation, and provides information about how 
individual English word and sentence meanings are linked 
to, and express, frames and frame elements (e.g. a given 
scene and its participants). FN consists of two key 
databases. One consists of lattices of frames, and the 
lexical units which evoke them.  The other is a database 
of sentences that have been annotated with respect to 
these lexical units and frames. Both FN frames and 
annotations can be used to expand ECG grammar 
coverage, and are described more fully in the sections 
below.  

FN data provides a formal representation of rich 
semantics. By linking word and sentence meaning to 
frames, it is possible to identify the event(s), event 
participants, and relations expressed by a given sentence. 
For instance, in (1), throw is a lexical unit in the 
Cause_motion frame, and annotation indicates that The 
boy is the Agent whose action causes the Theme (a ball) 
to move to a Goal (the pool).  

(1) The boy [Agent] threw [Target] a ball [Theme]  into 
the pool [Goal]  

FN’s frame structure thus makes it possible to situate 
lexically-specific meaning within a broader conceptual 
framework, facilitating semantic analyses at different 
granularities of generalization. It is possible to draw 
frame-level generalizations about the types of events and 
event participants being expressed by the different lexical 
units associated with a given frame. Frame-to-frame 
relations enable still broader generalization over groups of 
semantically-related frames. 

The semantically rich FrameNet data has been used in 
other computational applications, most notably in the 
development of automatic frame-based semantic role (SR) 
labelling (e.g. Das et al. 2014, Hermann et al. 2014). 
Unlike these approaches, our objective is to make full use 
of the rich FN data to identify and represent constructions, 
which explicitly capture the patterns by which frame-
based meanings are expressed. Further, this construction 
grammar approach provides representations that give 
linguistic insights into language use.  

Embodied Construction Grammar (ECG) 

As with other construction grammars, Embodied 
Construction Grammar (ECG) constructions are form-
meaning pairings (Bergen and Chang 2005; Feldman et 
al. 2010).  A given sentence is analyzed as instantiating 
multiple constructions; the overall form and meaning of 
the sentence is a composition of these individual 
constructs. For instance, example (1) instantiates several 
phrasal constructions, including an Argument Structure 
(A-S) construction (Goldberg 1995, 2006; Dodge 2010; 
Croft 2012) that specifies how the verb and its arguments 
(NP: a ball, and PP: into the pool) are used to describe a 

particular event (Cause_motion) and its participant roles 
(Target and Theme).  

In ECG, constructional meaning is represented using 
schemas, conceptual knowledge structures that contain 
generalized information about different types of events, 
objects, processes, and relations. Thus, schemas are --  by 
design -- similar in many respects to FN frames. 
Crucially, ECG schemas are rooted in perceptual and 
sensorimotor experiences. This draws on the theory of 
embodied cognition, the idea that all of human cognition, 
including high-level reasoning, is facilitated by embodied 
experiences in the physical world (Feldman 2006).   

ECG provides a formalism for representing both 
constructions and schemas, as described more fully later 
in this paper. ECG has also been computationally 
implemented beyond a descriptive formalism. Grammars 
can be viewed and designed using the ECG Workbench 
(Gilardi 2009). The ECG Analyzer (Bryant 2008) can be 
used to parse natural language input using an ECG 
grammar as a model for language. The output of the 
analysis is a data structure called a Semantic Specification 
(SemSpec), a meaning representation in the form of 
schemas, roles, bindings, and role-filler information. In 
this way, the SemSpec serves to specify which kind of 
event(s) a given sentence describes, as well as indicating 
the fillers of event roles. When there is more than one 
event, it specifies how the events are related to one 
another (e.g. causally, temporally, or with one event 
'embedded' in another). The SemSpec also captures other 
kinds of event-related information, indicating, for 
instance, the participant’s perspective from which the 
event is being described; this is more information than 
usually supplied by SR labeling systems. 

Integration of FN data into ECG 

In the current work, we focus on two complementary 
ways of using FN data to increase the coverage of ECG 
grammars.  First, we examine how FN frames can be 
converted to ECG schemas, thus substantially increasing 
the breadth and depth of the ECG schema 
lattices.  Second, we explore ways to generalize over FN 
valence patterns to build ECG argument structure 
constructions. 

In order to facilitate this (semi-)automatic process, we 
had to extract and normalize the FN data, allowing us to 
create and view patterns that are not directly accessible 
through the existing FN-based tools. We developed a set 
of tools to read in and manipulate FrameNet data, which 
we then used to produce ECG schemas and constructions. 
As we discuss, while FrameNet and ECG share a similar 
conceptual foundation, there are some key differences that 
need to be considered when using FN data to expand the 
ECG grammar.   



 

 

FN Frames and ECG Schemas 

The hand-built ECG grammar contains lattices of 
embodied schemas, which focus primarily on schemas 
related to basic, relatively universal human experiences, 
such as goal-directed motion, acting on and manipulating 
objects, as well as basic kinds of entities and spatial 
relations.  While some of the FN frames overlap those in 
ECG (e.g. Motion), FN also includes a large number of 
frames for a wide range of specific situations and entities. 
Thus, FN provides a means to substantially increase the 
conceptual coverage of ECG grammars.  

FN Frames 

FN frames are schematic representations of the 
conceptual structures associated with events, relations, 
and objects. As illustrated in Table 1 for Cause_motion, 
each frame contains frame elements (FEs) to represent 
internal frame structure. FEs are categorized with respect 
to their ‘coreness’ relation to the frame. For instance, in 
Cause_motion, FEs such as Agent and Theme are 
considered central to the frame’s meaning and are 
therefore marked as Core, whereas FEs such as Manner 
and Distance are considered less central to this specific 
frame, and are therefore marked as non-Core (i.e. 
Peripheral or Extra-Thematic). In some cases FN assigns 
a Semantic Type to an FE to indicate the basic type of the 
filler of this FE (e.g. Agent has Semantic Type: Sentient). 
Some FEs are mutually exclusive, captured via an 
‘excludes’ relation.  

Table 1.  Partial list of FN Cause_motion frame elements. 

FN uses several different relation types to capture 
frame-to-frame relations, as well as the relations between 
the FEs of the related frames. For instance, 
Cause_motion ‘Inherits from’ Transitive_action, and ‘Is 
Causative of’ Motion. Thus, individual FN frames are 
defined within larger frame lattices. Altogether, the frame 
lattice represents a network of world knowledge; 

crucially, the structures in this network were hypothesized 
from corpora of actual language use. 

Each frame also specifies a set of lexical units (LUs) 
which evoke that frame, thereby linking words to their 
frame-based meanings. For instance, Cause_motion lists 
42 LUs, including catapult, fling, hurl, move, nudge, 
shove, and transfer.  

Converting FN Frames to ECG Schemas 

ECG schemas and FN frames were designed with 
different purposes in mind, but are largely structurally and 
functionally analogous, as shown in Table 2.  

    FN frames ECG schemas 

Name FN frame name ECG schema name 

Relations Inherits from, Uses subcase of, evokes 

Elements Frame elements (FEs) roles 

Constraints Semantic type ontological type  

Internal relations FE to FE relations bindings 

Table 2. Analogous terms in FrameNet and ECG 

For example, inheritance relations are captured in FN 
via the ‘Inherits from’ relation and in ECG via the 
‘subcase’ relation.  The FNs ‘Uses’ relation is analogous 
to the ECG ‘evokes’ relation. One significant difference, 
though, is that there are several more ways to express 
relations between FN frames than between ECG schemas. 
For some FN relation types, the general ECG ‘evokes’ 
relation can suffice, but for others, such as ‘Precedes’ or 
‘Perspective on’ it is not immediately clear how to 
represent the relation in ECG. Causal relations are also 
handled differently in FN and ECG. FN, for example, 
uses a ‘Is Causative of’ relation to capture the causal 
relation between Cause_motion and Motion, whereas 
ECG captures this causal relation via the incorporation of 
causal structure within its CauseMotion schema (Dodge 
and Petruck, 2014). For the current work, we chose to 
include only the FN ‘Inherits from’ and ‘Uses’ relations 
in the conversion process.  But, in the longer term, some 
of the additional FN relations may prompt exploration of 
way to increase the expressiveness of the ECG formalism. 

Using these analogous relations, we automatically 
converted FN frames to ECG schemas. Figure 1 shows 
the ECG schema generated from the FN Cause_motion 
frame. Inherited roles are listed in comments, which are 
introduced by double slashes (//), and any semantic type 
constraints on FN FEs are converted to ECG ontological 
type constraints (e.g. @physical_entity). The ‘constraints’ 
section of the ECG schema shows FE-to-FE relations as 
ECG role bindings, symbolized by the double-headed 
arrow (↔).  

Using this model of frame-to-schema conversion, we 
were able to import 1205 frames into ECG. We used 
version 1.6 of FrameNet for this, but the conversion 



 

 

model is general and should apply to other versions, 
assuming the frame representation stays consistent. 

schema Cause_motion  
    subcase of Transitive_action  

    evokes Motion as motion  
    roles  
       // agent, cause, depictive, manner, means 

       // place, result, time are inherited 
       area 
       degree: @degree 

       distance 
       explanation 
       goal: @goal 

       handle 
       initial_state 
       instrument: @physical_entity 

       path 
       source: @source 
       subregion: @locative_relation 

       theme: @physical_object 
     constraints  
       patient ↔ theme 

       area ↔ motion.area 
       degree ↔ motion.degree 
       depictive ↔ motion.depictive 

       distance ↔ motion.distance 
       goal ↔ motion.goal 
       manner ↔ motion.manner 

       path ↔ motion.path 
       result ↔ motion.result 
       source ↔ motion.source 

       theme ↔ motion.theme 

Figure 1.  The ECG Cause_motion schema produced from the 

FN Cause_motion frame 

One of the other challenges of this process is 
integrating FN’s internally consistent hierarchy of frames 
with ECG’s internally consistent hierarchy of schemas. 
This is a general problem of combining ontologies; name-
space collisions arise, as do differences in inheritance 
lattices. There is no immediately clear solution to this 
problem. For the purposes of this work, we used a scaled-
down ECG grammar to prevent namespace and 
inheritance collisions. 

FN Valence Patterns to ECG Constructions 

Existing ECG grammars contain lattices of constructions 
for a wide range of basic clausal and phrasal 
constructions, including constructions for noun phrases, 
prepositional phrases, and basic types of clauses. The 
current work focuses on expanding the number and range 
of ECG Argument Structure (A-S) constructions, which 
generally specify patterns by which a verb and its 
arguments are used to describe a particular event and its 
participant roles. Specifically, we focus on the ways that 
valence pattern information recorded in FN annotation 

data can potentially be used to generate A-S 
constructions.  

FN data is in many ways well-suited to this task. First, 
FN frames are quite typically defined with respect to 
events and event participants, thus corresponding directly 
to the kinds of semantic information expressed by A-S 
constructions. Consequently, ECG A-S construction 
meaning can readily be specified by ECG schemas and 
roles that have been derived from FN frames and FEs. 
Second, the FN valence pattern information recorded for a 
given verb target is essentially a specification of a 
particular argument realization pattern associated with 
that verb.  

However, as we describe more fully below, there are 
some complicating factors. For instance, a given sentence 
typically instantiates many different constructions, and 
the annotation for that sentence may therefore reflect 
more than one constructional pattern. Also, constructions 
can potentially be specified at different levels of 
schematicity, though in a usage-based approach, specific 
and more general constructions can co-exist.  

In the following sections, we first discuss FN 
annotation and valence patterns, and then present a simple 
method of generating ECG A-S constructions from this 
information. Following this, we discuss the complicating 
factors and ways to handle them, by filtering and other 
methods.  

FN Annotation and Valence Patterns 

In addition to defining frames and sets of LUs that evoke 
these frames, FN annotates sentence examples containing 
these LUs, with the objective of demonstrating the 
different patterns by which frames and frame elements are 
expressed in language. Sentences are annotated with 
respect to target words (LUs) and the FEs expressed by 
the syntactic dependents of that target. For each of these 
constituents, three kinds of information are recorded: 
1. FE: the frame element it instantiates (e.g. Theme) 
2. PT: its phrase type (e.g. NP) 
3. GF: its grammatical function (e.g. Object) 
 

When the target is a verb, three types of GF are 
possible:  
● External argument (Ext): e.g., the subject of a finite 

verb 
● Object (Obj): objects, typically those which can also 

occur as subjects of passive clauses 
● Dependent (Dep): the grammatical function assigned 

to adverbs, PPs, VPs and clauses that typically occur 
after the verb in declarative sentences. 

FN data includes two kinds of annotation. In 
lexicographic annotation, FN annotates example 
sentences with respect to a single LU target, serving to 
illustrate the valence patterns for the LUs associated with 
a given frame. In full annotation of running text, FN 



 

 

identifies all the frame-evoking target words in a given 
sentence, along with the FEs expressed by each of them. 
The current work examines lexicographic annotation.  

FN valence patterns 

FN valence patterns, as displayed in FN Lexical Entry 
reports, are sets of FE realizations (FE/PT/GF triples) that 
co-occur in the lexicographic annotations for a given LU. 
Thus, for any given LU, an individual valence pattern 
indicates how a set of frame elements are instantiated 
grammatically,  as evidenced in one or more example 
sentence annotations. Table 3 shows the valence pattern 
displayed for a sentence such as example (1). Note that 
the FN display lists the FE realizations in the alphabetical 
order of the FEs, not in the order that they occur in the 
sentence.  

FE: Agent Goal Theme 

PT: NP PP[into] NP 

GF: Ext Dep Obj 

Table 3.  Valence pattern for “The boy threw the ball into the 

pool.” 

Using FN Data to Define ECG Constructions 

Our general strategy for using FN data is as follows. For 
each frame, consider the set of valence patterns, and: 
1. Filter out LU targets that have POS other than verb, 

since our focus is on ‘verb plus argument’ A-S 
constructions (verb plus its FE arguments) 

2. Remove non-core FEs from valence patterns. This is 
done because the valence patterns for core FEs are 
the best indicator of frame-specific A-S 
constructions. Non-core FEs may best be handled via 
separate constructions. Manner, for instance, can be 
handled via a separate modifier construction that can 
compose with many different A-S constructions.  

3. Ignore null-instantiated FEs; for the current work we 
focus on FEs that are explicitly expressed.  

Using this initial data set, we can explore various methods 
for identifying candidate argument realization patterns for 
ECG construction generation. 
  
Simple Case: 1-1 Mapping 
The simplest generation method directly maps FNs 
valence patterns to ECG constructions. As represented in 
Table 3, FN valence patterns already abstract away from 
the specific text strings that express these FEs, as well as 
the order in which the FEs occur in the sentences. 
Consequently, when two or more sentences exhibit the 
same set of FE realizations, they can be considered 
instances of the same valence pattern.  

It is fairly straightforward to represent an FN valence 
pattern as an ECG A-S construction. The meaning of the 
construction as a whole is identified with the ECG 
schema that was derived from the FN frame. The verb and 

non-external arguments (i.e. those whose GF is either Obj 
or Dep) will be used to define the construction’s 
constituents, with the PTs serving to estimate the 
constituent’s constructional type (e.g. NP). Bindings 
between the meanings of these constituents and the 
schema roles serve to specify which role (FE) is being 
expressed by each constituent. The external argument 
(e.g. a subject) is handled differently than the other 
arguments. ECG A-S constructions are a type of verb 
phrase, and therefore do not include a subject constituent. 
But, as part of their meaning, they evoke a profiled-
participant role, which is, roughly speaking, the semantic 
correlate of subject. Consequently, we implemented a 
general rule to bind the FE expressed by Ext to this 
profiled-participant role. See Figure 2 for an example of a 
construction generated using this algorithm. 

construction Cause_motion_pattern_10 
    subcase of ArgumentStructure 

contructional  
    constituents 
        v: Verb 
        pp-into: PP-Into 
        np: NP 

meaning: Cause_motion 
    constraints 
        self.m ↔ v.m 
        profiledParticipant ↔ self.m.agent 
        self.m.goal ↔ pp-into.m 
        self.m.theme ↔ np.m 

Figure 2. A-S construction generated from FN valence pattern 

The lexicographic annotation data for CauseMotion 
includes 821 sentence examples, which exhibit 598 
unique valence patterns. If we use a method that generates 
an ECG construction for each FN valence pattern, we 
would thus generate a very large number of constructions. 
More importantly, this method ignores any commonalities 
across the different valence patterns, and thus does not 
capture broader generalizations about language use. 

We can significantly reduce this number by 
generalizing over the specific verbs that appear in these 
patterns. Moreover, it is straightforward to define ECG 
constructions that make this generalization, by binding 
the meaning of the verb to the meaning of the A-S 
construction (self.m ↔ v.m). Thus, for the construction 
depicted in Figure 2, any verb whose meaning is 
identified with the Cause_motion schema (i.e. all the 
LUs in the Cause_motion frame) will be able to serve as 
the verb constituent in this construction. Making this 
generalization over verbs enables us to reduce the total 
number of constructions to 258. While this is an 
improvement, in the following section we discuss ways 
that we can further reduce the number of constructions 
needed to analyze these FN valence patterns. 

 
 



 

 

Further Exploration of FN Data  
In this section, we examine some ways to further explore 
the FN data, draw generalizations, and define additional 
constructions to capture the patterns exhibited by the FN 
annotated sentences. We start by looking for for broad 
generalizations in the argument realization patterns for a 
given frame, with the objective of identifying relatively 
general patterns in which the number, GF and FE of the 
constituents are the same. Then, based on these initial 
findings, we examine how other patterns in that frame 
may be fruitfully analyzed using an ECG compositional 
analysis, in which frame-specific A-S constructions 
compose with other, more language-general 
constructions.  

Because constituent ordering is an important feature of 
English A-S constructions, we are interested in the 
ordering in which the verb’s arguments are expressed. We 
divided the data into categories based on the type and 
order of grammatical functions of the core FEs expressed 
in a given sentence. Two general GF sequence pattern 
categories account for the majority of the 821 examples in 
the filtered Cause_motion data: 
1. Ext v Obj  Dep+  (55.8% of the data) 
2. Ext v Dep+          (20.3% of the data) 

The plus sign here has the usual meaning of “one or 
more instances of”. Therefore the first pattern describes 
instances of annotations in which Ext is followed by the 
target verb, then the object Obj and one or more 
dependents.  

 
Figure 3. Flow diagram for Ext → v → Obj → Dep+ patterns 

Figures 3 and 4 present Sankey flow diagrams of these 

two categories. The nodes (horizontal bars) in the diagram 

represent GF/FE pairs (e.g. Ext: Agent), with size 

proportional to relative frequency. The nodes are arrayed 

from left to right in their linear order of occurrence in 

sentence example (e.g. Ext: Agent → Obj: Theme). The 

width of the connections between nodes indicates the 

relative number of examples exhibiting that pattern. When 

we look at these patterns with respect to the FEs 

associated with each of these GFs, some clear patterns 

become apparent. 
 

 

Figure 4. Flow diagram for  Ext → v → Dep+  patterns 

The most commonly occurring pattern for the first 
sequence is: Ext: Agent → [verb] → Obj: Theme → Dep: 
Goal. This pattern suggests that rather than defining 
different A-S cxns for specific PP constituents (e.g. PP-
into, as in previous cxn), we should instead define more 
general PP constituents, such as more general Goal, Path, 
and Source PPs. Following such an approach, we can 
define a more general A-S construction that is consistent 
with this frequent pattern (see Figure 5). This construction 
differs from the previous one in two key ways: (1) rather 
than having a relatively specific ‘pp-into’ constituent, it 
has a more general ‘goal-pp’ constituent, and; (2) it 
includes a ‘form’ block that specifies the ordering of the 
different constituents. This construction captures the 
patterns expressed in examples such as He 
threw/tossed/catapulted the ball into/onto/to the box.  
 

construction Cause_motion_pattern_1A 
    subcase of ArgumentStructure 

contructional  
    constituents 
         v: Verb 
         np: NP 

           goalPP: Goal_PP  

form: v > np > goalPP 

meaning: Cause_motion 
    constraints 
        self.m ↔ v.m 
        profiledParticipant ↔ self.m.agent 
        self.m.goal ↔ goalPP.m 
        self.m.theme ↔ np.m 

Figure 5.  A-S construction with goal-PP constituent 

For the second sequence (as shown in Figure 4), the 
most frequent pattern is similar to that of the first 
sequence, in that it also expresses the Goal (Ext: Theme 
→ [verb] → Dep: Goal). Thus, the main distinction 
between the two most frequent patterns in these two data 
sets concerns the different ways that the Agent and Theme 
are expressed, with the different patterns clearly 
corresponding to an active/passive distinction, which is 
part of a much more general language pattern. 
Consequently, rather than defining separate A-S 
constructions for these two patterns, it is preferable to 



 

 

define a single construction that generalizes over the two 
patterns. This construction can then compose with much 
more general Active and Passive VP constructions, which 
is a method employed in existing ECG grammars to 
analyze passive and active expressions. 

In both data sets, in addition to expressing Goal, Dep 
frequently expresses Path and/or Source, all of which are 
FEs used to indicate the spatial location of the Theme. In 
ECG, these three FEs are analyzed as part of a larger 
gestalt, represented as a SourcePathGoal schema, which 
enables generalizations over instances that in FN are split 
into three separate cases. In this way, image-schematic 
structure present in ECG facilitates generalizations that 
are not necessarily immediately apparent in FN.  

We can also potentially make generalizations that are 
related to the ‘excludes’ relations between FEs. For 
instance, in Figure 3 we see that Agent and Cause are the 
two FEs most commonly expressed by the Ext argument, 
and that both occur as part of similar sequences. Since 
these two FEs are in an ‘excludes’ relation (as shown in 
Table 1), they are essentially alternatives to one another. 
Given the current structure of ECG, two different 
constructions are needed to capture the patterns associated 
with each of these FEs. However, it is also possible to 
abstract over these patterns by making them subcases of a 
more general supertype construction.  

The most common patterns present in the remainder of 
the data are displayed in Table 4. In some cases, the 
patterns reflect the interaction of other constructions with 
the main A-S construction pattern. For instance, 
annotation of relative clauses typically results in duplicate 
FE realization patterns (e.g. Ext: Agent → Ext: Agent). 
This is the case for patterns number 9 and 10 in Table 4, 
which are, respectively, linked to phrases such as a large 
envelope which he threw onto the table and a powerful 
weapon which can hurl its bolt. By treating the duplicates 
as two instances of the same element, we can identify 
similarities between these and other patterns in the data.  

 

Table 4.  Patterns with five or more instances in ‘Other’ data 

set. in descending frequency (‘fr.’) order. 

Imperatives also produce another pattern, with the 
Agent FE appearing as CNI rather than as Ext, which is 

consistent with patterns 2, 7, and 8 (which contain 
examples such as Do not fling me from your house!). 
Similar to passives, ECG uses a more general Imperative 
construction that composes with different A-S 
constructions to analyze imperative sentences.  

This same approach can be readily applied to other 
frames, enabling comparison of patterns across related 
frames. For instance, Cause_fluidic_motion is a subcase 
of Cause_motion. We can see the similarity between the 
most frequently occurring patterns for these two frames 
(as shown in Figures 4 and 6), given that the 
Cause_fluidic_motion Fluid FE is a more specific case 
of the Cause_motion Theme FE . 

Figure 6. Flow diagram for Cause_fluidic_motion,  

Ext → v → Obj → Dep+  patterns 

In sum, we can see that there are many ways to explore 
the FN data, and to use it to identify the kinds of 
interacting patterns and generalizations that are relevant 
to the development of A-S constructions. While this 
initial work has focused on the FN Cause_motion frame 
and its lexicographic annotations, the methods described 
here have been designed to be applicable to any frame, or 
combination of related frames.  

Future Directions 

The next step is to extend and refine the present work in 
order to use the entirety of the FN data to automatically 
generate A-S and other constructions (e.g. nominal and 
prepositional phrase constructions). As part of this 
process, we will iteratively evaluate and refine the 
resulting ECG grammar by applying it to the analysis of 
real world data. One possible avenue for evaluation is to 
use the FN full-text annotations as a “gold standard” set 
for testing the accuracy of the annotation produced via 
ECG analysis. During this process it is important to keep 
in mind that FN data is not intended to be statistically 
representative of actual language usage frequencies, and 
therefore does not supply optimal distributional 
information.  

While FN data provides a way to substantially increase 
the coverage of an ECG grammar, this approach is 
ultimately limited by the coverage of FN itself (Palmer 
and Sporleder 2010). Thus, even if we succeed in 



 

 

generalizing ECG schemas and constructions across the 
entire FN database, there will still be many utterances that 
cannot be fully parsed due to gaps in constructional 
coverage.  

Therefore, additional steps will be needed to further 
expand the grammar. One possible way to address this 
constraint is to expand FN coverage using machine 
learning. This might be accomplished starting with 
methods such as those described by Pennacchiotti et al. 
(2008), who induce new adjectives and verbs using word 
similarity based on distributional semantics. Ultimately, 
we would also like to investigate how the constructional 
parsing methods we develop can themselves help in this 
task of expanding FN.  

  It is also important to note that FN is not necessarily 
designed to contain all the types of semantic information 
and constructional patterns needed to create a 
comprehensive grammar of English (McCauley and 
Christiansen 2014). Therefore, some conceptual and 
constructional gaps in the grammar will have to be filled 
by other means. Previous work in learning ECG 
constructions (Chang 2008, Mok 2009) provide some 
possible future directions in this regard.  
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